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We present a performance comparison of tree data structures for N -body simula-
tion. The tree data structures examined are the balanced binary tree and the Barnes–
Hut (BH) tree. Previous work has compared the performance of BH trees with that
of nearest-neighbor trees and the fast multipole method, but the relative merits of BH
and binary trees have not been compared systematically. In carrying out this work,
a very general computational tool which permits controlled comparison of different
tree algorithms was developed. The test problems of interest involve both long-range
physics (e.g., gravity) and short-range physics (e.g., smoothed particle hydrodynam-
ics). Our findings show that the Barnes–Hut tree outperforms the binary tree in both
cases. However, we present a modified binary tree which is competitive with the
Barnes–Hut tree for long-range physics and superior for short-range physics. Thus,
if the local search time is a significant portion of the computational effort, a binary
tree could offer performance advantages. This result is of particular interest since
short-range searches are common in many areas of computational physics, as well as
areas outside the scope of N -body simulation such as computational geometry. The
possible reasons for this are outlined and suggestions for future algorithm evaluations
are given. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

The modern impetus for the study of the N -body problem [1] has come from astrophysics,
where N -body problems are seen in the guise of galaxy dynamics, star cluster evolution,
dark matter distribution, etc. The use of tree-like data structures to solve the numerical
N -body problem began in the mid-1980s. This avenue of attack implements a “divide and
conquer” strategy to solve the problem [2–5] and effectively reduces the computational
work of the N -body problem from O(N 2) to O(N log N ). Fast multipole methods [6, 7]
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also have enjoyed a certain degree of popularity. Tree algorithms have been applied to
plasma and hydrodynamic modeling.

The simulation of N -body problems typically involves two classes of physical phe-
nomena: those governed by long-range forces and those governed by short-range forces.
Perhaps the best examples of these two extremes are gravity and gas dynamics. In the
gravitational problem, the range of influence of particles is over the entire computational
domain: every particle affects every other particle. For simulations of gas dynamics (in-
viscid compressible flow), only particles which are spatially local influence a given parti-
cle. Each particle in a gas dynamics simulation has a limited domain of influence which
is much smaller than the entire computational domain. The differences between these
classes of simulations lead to different computational goals in the creation of N -body
algorithms.

For gravitational forces, the computational goal is to reduce the work as much as possible
with a controllable amount of error. This task is a long-range search. In gravitational tree
codes, for example, the nodes of the tree are used to represent the properties of all particles
within the spatial region enclosed by the node. If the relative size of a node is small compared
to its distance from a given test particle, the nodal properties (mass, center of mass, and
higher order moments), rather than the properties of each individual particle contained
within the node, are used to compute the force on the test particle. This approximation
can be made if the size-to-distance ratio of the node is small enough to limit the error to
some specified amount. If the error criterion cannot be met, the tree must be descended
further.

For meshless simulations of gas dynamics phenomena, the most common approach is
smoothed particle hydrodynamics (SPH). In this case, the computational goal is to identify
as rapidly as possible all particles within a specified distance from the test particle. This
task is a short-range search. The complete set of particles which fall within the region
of influence of a given test particle must be obtained before the fluid variables can be
updated.

Despite the fact that the long- and short-range problems represent different types of
physical phenomena, there are many circumstances in which both gas dynamics and grav-
ity are needed in the same simulation. In astronomy, the use of the tree for gravity cal-
culations preceded its use to find the neighbors of SPH particles. However, many simula-
tions of galaxy dynamics, cosmology, and binary star dynamics now use both gravity and
SPH trees ([8] represents one of the first such approaches; see [9] for an example SPH
trees).

This paper focuses on two tree algorithms as applied to long- and short-range searches
in the context of N -body simulation: balanced binary (hereafter binary) trees and Barnes–
Hut (BH) trees. When Hernquist successfully vectorized the Barnes–Hut algorithm [3]
and explored its properties, spatial oct-trees became the de facto method for gravitational
calculation. Since Hernquist’s seminal papers, most of the attention in tree codes has fo-
cused on vector and parallel implementations of the Barnes–Hut algorithm [10], as well as
methods for error control [11]. Similar (but fewer) studies have been performed for binary
trees [12].

Despite the attention given to the individual algorithms, a systematic comparison of the
relative merits of BH and binary trees has not appeared in the relevant literature. Previous
work has compared the performance of BH trees with that of nearest-neighbor trees [13] and
the fast multipole method [14]. Anderson explored the asymptotic behavior of the binary
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and BH trees but did not numerically examine the performance differences between the two
approaches on typical problems [5].

Thus, the purpose of this paper is to present a performance comparison of the BH and
binary trees for both long- and short-range forces. In carrying out this task, a very general
computational vehicle which permits controlled comparison of the two tree algorithms was
developed. Due to the extensive use of tree-independent procedures, the comparisons are not
influenced by implementation; only a small portion of the tree construction algorithm must
be separately coded for each tree. For gravitational forces, the search has been implemented
so that the error can be specified a priori. Therefore both trees are guaranteed to have
identical error bounds, as is required for a truly fair comparison.

The remainder of this paper is organized as follows. Section 2 describes the methodology,
design, structure, implementation, test, validation, and optimization of the two tree codes.
Section 3 provides an overview of the test cases, and Section 4 presents the results of the
computational experiments. Conclusions regarding the advantages and disadvantages of
each approach are presented in Section 5, along with insights into the appropriate regimes
of applicability of each method.

2. METHODS

2.1. Tree Construction

The original papers describing the binary and Barnes–Hut trees describe basic methods
for their construction. In this work a tree construction algorithm which is independent of the
tree type has been implemented. This algorithm is based on a simple recursive subdivision
technique [15] and distinguishes between the two trees by the number of daughters into
which each parent is divided. For the BH tree, the parent node is divided into eight regions
(usually cubic) of equal volumes. The division point is located at the geometric center of the
parent node. For the binary tree, the parent node must be divided along its largest dimension
such that an equal number of particles are present on each side of the division.

For either tree, the information stored with each node consists of the following:

• mass and center-of-mass coordinates
• quadrupole and higher order moments
• geometrical center
• size of the node
• the daughters or particles contained in the node

The calculation of mass, center of mass, and higher order moments is implemented as
separate, tree-independent procedures.

Previous studies of tree data structures have suggested that the BH tree is asymptotically
superior to binary trees for long-range gravity calculations [5]. Through the use of regular
spatial divisions, the higher order multipole moments are bounded. For the binary tree, a
single distant outlier can cause pathological behavior because the higher order moments
converge so slowly.

A modified binary tree also was examined. In the modified binary tree, two levels of
nodes are skipped so that a typical node has eight daughters. Each of these nodes was
created through orthogonal recursive bisection, but the branching ratio was changed to be
similar to that of the BH trees. This feature allows one to examine how the branching ratio,
rather than the underlying tree structure, impacts performance.
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2.2. Tree Walking for Long-Range Forces

Originally, the standard “B-mac” θ criteria for the binary and BH trees were tested.
However, since the nodes for binary trees can become very elongated, the higher order
multipole moments can create large errors which are not well represented by these walks.
Large differences in the force accuracies between binary and BH trees at the same θ value
were found to exist.

In order to draw fair conclusions about the relative performance differences of binary
and BH trees for long-range forces, we have adopted the methods developed by Salmon
and Warren to place upper limits on the maximum force error in a tree [11]. This algorithm
works by creating a priority queue for the force errors. For each node traversed, the force
is calculated for a particle and the node. At the same time, the estimated error for the
force calculation is found through the use of higher order moments to bound the truncation
error of the multipole expansion. The forces and relative errors are added to the priority
queue such that the node with the highest error is at the top of the queue. The total error
is then estimated as a sum of the errors for each node in the queue. If the the total error
is small enough, the search terminates. If the total error is too large, the node with the
worst error is deleted from the priority queue and its daughter nodes are inserted into the
queue.

The Warren–Salmon approach is a very general procedure which allows bounds to be
placed on either absolute or relative errors and the total estimated error to be calculated in a
number of ways. For these tests, the acceptance limit was set to be some fraction of the force
calculated during the walk. For example, a tolerance of 0.01 allowed the total estimated
error to be 1% of the total force from the walk. The total error was calculated as a sum of
the absolute values of the errors in the priority queue. When the Warren–Salmon walk is
implemented, the time required for the calculation is dominated by the intermediate force
and error calculations. The final interaction list becomes the final set of nodes within the
priority queue, but all of the parents of these nodes were at some point included.

The walk algorithm was implemented as a tree-independent subroutine. This approach
eliminates the possibility of coding differences which might affect measured performance.
In both cases, the multipole moments calculated during the build phase are used to estimate
the truncation errors. Furthermore, the test results presented in this paper are, to at least
the first order, independent of any parallelization or temporal domain splitting. At the
core of all these codes, particles walk one or more trees. Although a multiple timestep
routine can change the number of times an individual particle needs to walk a tree, and a
parallel implementation can effectively change the numbers of trees walked, the underlying
efficiency of the tree structure will play a key role in either of these optimizations.

In parallel tree codes, domain decomposition is usually accomplished with either an
orthogonal recursive bisection [16] or a hashed oct-tree [17]. After the spatially local set
of particles have been placed on each node of the computer, local trees are constructed and
information is exchanged between computer nodes. In the end, the efficency of the algorithm
will be directly affected by the number of local and external nodes needed to complete all
the walks on each computer node. If the number of nodes needed to form a “locally essential
tree” increases because of the tree structure, both the communications and the walk time will
increase. Numerical experiments have confirmed that the results presented for the binary
and BH performance are nearly the same in parallel implementations, since the walk time
dominates the communication.



COMPARISON OF TREE DATA STRUCTURES 5

For multiple-timestep algorithms, the number of walks needed will be exactly the same
for both binary and BH trees. For particles with rapidly changing forces and a shorter
timestep, one might expect a somewhat longer interaction list than for particles with slow
timesteps. However, no significant additional performance differences between binary and
BH trees have been observed when a multiple-timestep algorithm is used.

2.3. Tree Walking for Short-Range Forces

Short-range searches using a tree code are used throughout computational physics. As
mentioned before, smoothed particle hydrodynamics uses a local list of particles to update
density, momentum, and energy. However, many problems in computational geometry and
molecular dynamics use similar algorithms [18, 19].

Performance differences in short-range searches are substantially simpler to measure,
since the underlying operation is essentially an integer count. The list of particles within
a certain distance from a given test particle must be exactly the same regardless of which
tree is used. The answer is uniquely specified by the search radius, and hence the issue of
error limits is completely irrelevant. The difference in the performance of binary and BH
trees will be characterized by the number of nodes processed in the formation of the list.

As in the long-range search, a tree-independent procedure is used to perform short-range
searches. The underlying approach is to filter out nodes with a fast check on the bounding
dimensions of the node. If a node is found to intersect the search radius, the daughters of the
node must be examined. Note that situations can arise where a node intersects the search
radius, but the particles within that node lie outside the search radius. Therefore, at some
level the interparticle distances must be examined directly.

Obviously, the overall speed of the procedure will rely heavily on the specific algorithmic
details used to process nodes. This procedure, however, is independent of the type of tree
used. The relative performance between the two trees can be captured simply by counting
the number of nodes that are processed during the search.

3. ANALYSIS

3.1. Overview of Test Cases

Two test cases were used to examine the relative performance of the BH and binary trees.
These cases were

1. Uniform average density (UAD) within a cubic region of space.
2. Lowered isothermal sphere (LIS), i.e., a centrally concentrated star cluster.

Note that the UAD test case is more representative of periodic systems, while the LIS test
case is more representative of astrophysical applications.

The number of particles NP ranged from 213 to 215. The upper limit was chosen based on
two observations. First, for calculations significantly larger than 105, parallel architectures
are typically used with 104–105 particles per processor. Second, our tests were intended
to be limited to algorithmic performance, which can be examined with moderately sized
data sets.

Each test case was evaluated for a single time step. For algorithmic performance, a single
time step is sufficient. In the actual code an individual timestepping scheme is used for each
particle, but this feature is not relevant to the performance measures examined in this study.
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3.2. Uniform Average Density

The first case in the study consists of a uniform average density of particles within a
cube. Particles for this case were distributed with a pseudo random number generator with
uniform iterates. For the BH algorithm, the average depth of the tree should be close to
log8 NP , since the spatial distribution of the particles will match closely the distribution
of cells within the tree. The binary tree also should have regularly shaped nodes. After
each three successive bisections, one would expect the shape of the cells to be almost cubic
because of the uniform distribution. This makes this particular test case very similar for
both binary and BH trees.

3.3. Lowered Isothermal Sphere

The second test case in this study consists of particles distributed according to a lowered
isothermal sphere or a King model. King models are generated with a distribution function
of the form

fK (ε) =
{

ρ1(2πσ 2)3/2(eε/σ 2 − 1) ε < 0

0 ε ≥ 0,
(1)

where ε is the relative energy of a star and σ is the velocity dispersion in this distribution.
The density function for this distribution is given by

ρK (�) = ρ1

[
e�/σ 2

erf(
√

�/σ) −
√

4�

πσ 2

(
1 + 2�

3σ 2

)]
, (2)

where � is the relative potential energy in this distribution. This function fits the distribution
of globular clusters and elliptical galaxies well and has many similarities to Plummer dis-
tributions. Details of King model distributions are discussed by Binney and Tremaine [20].

Particles in King models are distributed with random velocities and angles and possess
a radially decreasing density distribution with a finite truncation radius. The density ratio
between the inner core and the outer halo in King models is characterized by the value of
�/σ 2. In this test case, we set �/σ 2 = 3. Since there is a radial density gradient in the
distribution, this case is less ideal than the UAD case for both the BH and binary algorithms.
This case, however, is not particularly pathological for either.

3.4. Performance Metrics

The tree walk itself is composed of two distinct parts. First, the tree must be searched
to generate the interaction list. Since the search algorithm is identical for both trees, the
number of node evaluations required to generate the interaction list is a measure of the speed
with which the tree can be searched. Since this measure depends on the shape of the tree,
some dependence on both particle distribution and NP is expected. The second part of the
walk is the loop over the interaction list to calculate and sum the forces. The time required
to compute the force contribution from a single entry in the interaction list will be the same
for both trees.

For long-range forces such as gravity, the length of the interaction list is not, in general,
expected to be the same for both trees. For this reason one tree may require significantly
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FIG. 1. NN as a function of error, UAD test case.

more force calculations than the other. Differences in the length of the interaction list
will contribute directly to measured differences in performance, as will the number of node
evaluations required to generate the interaction list. For SPH, the interaction list is an integer
count which must be the same for both trees. The length of the interaction list will have no
effect on the relative performance of the two trees. Only the number of node evaluations
required to generate the interaction list will differ between the two trees.

In view of the above considerations, the primary performance metric presented is
NN , defined to be the average number of nodes processed per particle during the search.



8 WALTZ ET AL.

FIG. 2. NI as a function of error, UAD test case.

For long-range gravitational searches, an additional metric is presented: NI , defined to
be the average interaction list length per particle. For both of these metrics, a smaller
measure indicates better performance. All measurements are normalized to those of the
BH tree. Therefore, for each test case one set of metrics is presented which directly
expresses the performance of the binary tree relative to the BH tree. The results obtai-
ned with the level-skipping binary tree are denoted by N ′

N and N ′
I . Since NN and NI

are not timing measurements, they are independent of machine type or programming
language.
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4. RESULTS

The results for NP = 214 are shown in Figs. 1–3 for the UAD test case and in Figs. 4–6
for the LIS test case. The results show NN and NI as a function of error for the long-range
forces, and NN as a function of search radius for the short-range forces. The results are
normalized to those of the BH tree so that a value less than one indicates that the binary
tree is faster, and vice versa. The results for the two different test cases do differ slightly,
as one would expect, but the general trends are the same. No change in results in relative

FIG. 3. NN as a function of search radius, UAD test case.
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FIG. 4. NN as a function of error, LIS test case.

performance was observed for either NP = 213 or NP = 215. Therefore these results are
not presented.

The long-range results show that the BH tree is more efficient than the binary tree
for gravitational calculations. With the level-skipping feature enabled in the binary tree,
however, the performance differences drop to a few percent. Although the test geometries
are somewhat typical for N -body problems, extreme outliers are not present in the particle
distribution. If such particles had been included, the performance difference between BH
and binary trees would widen.
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FIG. 5. NI as a function of error, LIS test case.

One interesting observation is that the final interaction list of the binary tree is actually
shorter than the final list for the BH tree. Because the binary tree branches to only two
daughters, the final list size does not increase as rapidly as for the BH tree. However,
the number of intermediate gravitational force and error calculations for the BH tree is
substantially smaller for the binary tree. Therefore the BH tree is still more efficient. With
level-skipping enabled, the interaction list of the binary tree exceeds that of either the
standard binary tree or the BH tree. However, because N ′

N is very close to 1, the overall
efficiency of the binary tree with level-skipping is similar to that of the BH tree in the
absence of pathological cases.
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FIG. 6. NN as a function of search radius, LIS test case.

The short-range results indicate that the relative performance differences between the
binary and BH tree are much smaller in this scenario. When level-skipping is enabled, the
binary tree becomes approximately 25–30% faster than the BH tree. The final interaction list
has no meaning in these tests since, for all three algorithms, the list is exactly the same. The
values for NN are very similar for the two test cases: although the global particle distributions
are different in the two cases, the local distributions seen by any particular particle will not
vary greatly. Note that neither extreme outliers nor the length of the interaction list has any
bearing on these results.
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5. CONCLUSIONS

A performance comparison of Barnes–Hut and balanced binary trees was performed.
This comparison was performed for both long- and short-range forces and with a tree-
independent implementation. The performance metrics used to compare the performance
were the number of node evaluations required to build the interaction list and, for long-range
forces, the length of the interaction list itself. These metrics are well correlated to execution
time for the tree walk and force summations, respectively. Due to the use of integer metrics
rather than timings, the results are independent of computing platform or language. The
comparison also is, to the first order, independent of any parallelization or multiple-timestep
schemes.

For long-range forces, an explicit error control was used. In contrast to simpler θ -criterion
methods, the error control ensures that both trees compute the “correct” answer and that
the comparison is truly fair. The results of this test indicate that the BH tree outperforms
the standard binary tree. The speed advantage of the BH tree varies with relative error
but, generally speaking, the BH tree is several times faster than the standard binary tree.
This behavior is observed with different particle numbers and distributions. However, a
modified binary tree which makes use of a level-skipping procedure is competitive with
the BH tree. The relative performance differences are on the order of a few percent. Note
that the performance measurements for the long-range forces do not necessarily hold in the
absence of a strict method for error control.

The trade-off associated with the modified binary tree is that although the number of node
evaluations decreases to about that of the BH tree, the length of the interaction list increases
(as one would expect). For the specific type of walk used in this study, the interaction list
length is somewhat irrelevant because the forces (and the errors) are computed during the
walk procedure itself rather than as a separate procedure. However, this may not always be
the case. Note that this trade-off only exists for long-range forces.

For short-range searches, the desired result is a list of particles which lie within a certain
distance from a given test particle. Since the list results from a counting operation, error
control is irrelevant and the comparison is by default a fair comparison. The results of this
test indicate that the relative performance differences between the binary and BH trees
are much smaller than in the long-range case. The binary tree generally requires one to
two times as many node evaluations as the BH tree. When the modified binary tree is
used, however, the situation is reversed, and the BH tree becomes approximately 25–30%
slower.

This last result has potential applications beyond astrophysical N -body work. For
example, molecular dynamics problems which utilize Lennard–Jones (and similar) poten-
tials stand to benefit from the use of the modified binary tree. Many problems in com-
putational geometry also require rapid determination of nearest-neighbor lists. Note that
in some simulations, the search time might constitute a small percentage of the overall
computing expense. In these cases the impact of the modified binary tree may be less
dramatic.

One possibility for future research is to implement a variable level-skipping procedure.
An optimal value which provides for further performance improvements may exist. Inves-
tigation of average force error and how it compares with the specified error tolerance also
may be worthwhile. In practice, one might be able to achieve low levels of force error with
a relatively high error tolerance.
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